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ON THE ORLICZ FUNCTION SPACES Ly (0, %)
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NIELS JARGEN NIELSEN

ABSTRACT

The isomorphic properties of the Orlicz function spaces Ly (0,%) are investi-
gated. Especially we treat the question, whether the L,-spaces are the only
symmetric function spaces on (0,%), which are isomorphic to a symmetric
function space on (0, 1). For the class of slowly varying Orlicz functions we
answer this in the affirmative, and we also prove some results concerning the
general case, which indicate, that it might be true there also.

Introduction

It is a well known fact that the space L,(0,%) 1 =p < «isisometricto L,(0,1)
(even lattice isometric), and it is therefore natural to ask the question, whether
the L, (0,«)-spaces are the only symmetric function spaces on (0, %), which are
isomorphic to symmetric function spaces on (0, 1). Mityagin [10] has conject-
ured that indeed it is so.

In this paper we investigate this conjecture for the class of symmetric
function spaces consisting of the Orlicz function spaces Ly (0,), where M is
an Orlicz function satisfying the A,-condition.

Tn Section 1 we investigate the isomorphic properties of the spaces Ly (0,®);
e.g. we show that the set of Orlicz functions N, for which the unit vector basis of
the sequence space Iy is equivalent to a sequence of functions in L (0, %) with
mutually disjoint support consists exactly of those Orlicz functions, which up
to equivalence belong to a natural compact convex subset of C(0,1). This
theorem is similar to the corresponding results for the spaces [y and Lu(0,1)
proved by Lindenstrauss and Tzafriri [7], [8], and also the proof of it is close to
theirs. We also show that the set of those p’s (1 =p <x), for which the unit
vector basis of I, is equivalent to a sequence of functions in Ly (0,) with
disjoint supports, is either an interval or the union of two intervals, namely the
two intervals [am, Bu] and [a y, B %] associated to respectively Iy and Ly (0,1)
in [8]. Finally we modify the ““A §-technique” of Kadec and Peiczysski {3] to
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get a technique, which can be applied to function spaces over sets of infinite
measure.

In Section 2 we present our main results, related to the conjecture above.
Through a series of propositions and theorems we show that if a reflexive
Orlicz space Ly (0, %) with the intervals [an, Bu] and [a 3, B »] to the “same side
of 2" is isomorphic to a symmetric function space on [0, 1], then Ly (0,) is
isomorphic to Lw(0,1) and [am, Bu] C [am, Bul. The same is true if the
condition above is loosened to 2 & [awu, Bu] U [{a », B ] and the above symmet-
ric function space is an Orlicz space. These results give, of course, many
examples of Orlicz function spaces on (0, ) which are not isomorphic to any
symmetric function space on [0, 1] (namely spaces, where the two intervals are
disjoint).

The above results are then used to show one of the main results in the
section, namely an affirmative answer to the above conjecture for the Orlicz
spaces Ly (0,»), where M is an Orlicz function which is slowly varying at «
(i.e. lim_.(M(tx))/(M (1)) exists for all x € [0, 1]), and whose intervals satisfy
the above conditions.

Finally we present some general results, which indicate, how the conjecture
might be proved for general Orlicz spaces.

0. Preliminaries

In this paper we shall use the standard notation of the theory of Banach
spaces, as it appears in [5]; let us just here recall that if X and Y are Banach
spaces, then the Banach distance d(X, Y) between X and Y is defined by

d(X,Y)=inf{||T||||T7"| | T isomorphism of X onto Y},

if X and Y are isomorphic and = else.

By an Orlicz function we shall always mean a continuous convex non-
decreasing function M: [0, %[ — [0, =[, so that M(0) =0, M(1)=land M(x)>0
for x > 0.

The Lebesgue measure on [0, [ will in this work always be denoted by the
letter A.

Let M be an Orlicz function and let A C [0,o[ be a A-measurable set. The
Orlicz function space Lu(A) consists of those measurable functions f defined
on A, for which there exists an r, so that L.(f) = faM(r7'|f|)dr <. With the
norm ||f]| = inf{r|L(f) =1} Lu(A) is a Banach space.

Similarly the Orlicz sequence space Iy consists of all those sequences (t,) of
scalars for which there is an r >0 with
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LUt) = 2 ML) <.

With the norm ||(¢.)|| = inf{r|L((t.})) =1} is a Banach space. For the basic
properties of Orlicz spaces we refer to [9]. In this paper we shall only work with
separable Orlicz spaces [y, Lx(0, 1) and L (0, %), and therefore we shall always
assume (unless otherwise stated) that the Orlicz function M satisfies the
A,-condition; t.e. there is a constant K =1 so that

*) MQ@2x)= KM() x=z0.

The smallest constant which can be used in this inequality is called the
A,-constant of M.

Here we should keep in mind that when we consider the spacely only the
values of M close to 0 are important, and for the space Ly (0, 1) only the values
close to = are important, while for L (0, ») the values of M both close to 0 and
to = matter. (See e.g. [9]). Therefore when we consider the sequence space [y
we shall often consider M as an element of C(0,1).

The sequence (e.) C Iu, where e, = (5, ). is called the unit vector basis of [y ;
when M satisfies the A.-condition (equivalently when [\ is separable) (e, ) is a
symmetric basis in ly.

If M and N are Orlicz functions, then we say that M and N are equivalent, if
there is a constant K = 1, so that

(**) K 'NX)=EMx)=KNX) x =0.

We shall say that M and N are equivalent at 0 (respectively at ), if (**) holds
in a neighbourhood of 0 (respectively x).

For a detailed study of the isomorphic properties of the spaces /., and
Ly (0,1) we refer to (4], [6], [7] and [8]; see also [5].

If M is an Orlicz function, then we shall make use of the following important
sets related to M:

. o i _ e M(tx)
EM—{N € CO,D[3(t) C R £, —  with N(x) = lim M(tn)}'

Cru=conv E5  (closure taken in C(0,1).)

For 0 <s <1 we define
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_M}

Eu.s =M@

{Necm,l)(at 0<t=s with N(x)

Cus = conv Ey..

M Em..

O<s =1

En

Cu = conv Eu.

It follows from the A,-condition that all the above sets are compact subsets
of C(0,1).

It was proved in [7], that the unit vector basis of an Orlicz sequence space Iy
is equivalent to a block basic sequence of the unit vector basis of I, if and only
if N € Cu., and in [8] it is shown that the unit vector basis of Iy is equivalent to
a sequence of functions in L, (0, 1) with mutually disjoint supports if and only
if N Cx.

If M is an Orlicz function then the following numbers are important:

M(tx
am = s“p{" ,3up, M(g)x)" <°°}
Bu = inf{p | inf_ ——A%’)’;), >o}

- M(x)y* }
= <
an S"p{plfilzpn MGy) =%

. . . o M(x)y* }
Bm—mf{p lesnzfl MGy) >0

It is proved in [8], that both intervals [awm, Bux] and [aw, B ] are compact
subsets of [1,%[ and that p € [aw, Bn] if and only if the unit vector basis of /, is
equivalent to a block basic sequence of the unit vector basis of [y, while
p € [awm Bu] if and only if the unit vector basis of I, is equivalent to a
sequence of functions in Ly (0, 1) with mutually disjoint supports.

1. The isomorphic properties of the spaces L, (0,%)

In this section let M be a fixed Orlicz function and define the sets:
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. Mt
EM(0,°°)={N€C(0,1)|3t>0 with N(x)=—A7((—t%2 Oéxél}.

Cu(0,2) = conv Ey (0, ).

It follows immediately from the A,-condition of M that both E,(0,>) and
Cn(0,0) are compact subsets of C(0,1).

Our first theorem shows that the set Cy (0, ) plays the same role for Ly (0, )
as Cu, and C; do for the spaces I, and Ly (0, 1) respectively. The proof of it is
similar to the corresponding results in [7] and [8].

THEOREM 1.1.

(i) Every normalized sequence of mutually disjoint” elements from Ly (0, )
has a subsequence, which is equivalent to the unit vector basis of an Orlicz
sequence space Iy for some N € Cu(0,).

(ii) If N is an Orlicz function, the unit vector basis of Iy is equivalent to a
sequence of mutually disjoint elements of Ly, (0, ) if and only if N is equivalent
at 0 to a function in Cy (0, ).

Proor.
@): Let (f.) € L.(0,»), with ||f,]|=1 and f, Lf. for n#m and put A, =

supp f..
For each n €N we define the Orlicz function

) M) = [ MG In@Dhdr = [ BATHEOD g

where u is the measure with du /dt = M(|f.]).

Since u (0,%) = w(A,) = 1 it follows immediately from (1) that M, € Cy (0, ®).
From the compactness of Cy(0,) it follows that there is a subsequence (M,;)
of (M) and an N € Cy(0,%) so that

) |My(x)— N(x)| <27 forallx €[0,1],allj EN .

Since Z;t,f,; converges if and only if £,M,;(|£]) <= it follows from (2) that (f,;)
is equivalent to the unit vector basis of Iy. This finishes the proof of (i).

* Two elements f,g € L, (0,») are said to be disjoint, if they have disjoint supports, and in
that case we write f Lg.
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(ii): Let N € C.(0,»). By the Krein-Milman theorem we get that there is a
probability measure u on E(0,») so that

3) N(x)=f G(x)du(G) x €[0,1].

Epm(0.)

If we put a; = p(Emi), a2 = n(Ej\Euy) and a3 = 1— a, — a,, then it follows
from (3) that N can be written as

(4) N=a.N,+azNz+a3N3,

where N] (S CMJ, Nz = C; and

) Ny(x) =1+

a3 jEM(O.I)\EmJUE; G(x)dM(G)'

(If for an i, a; =0, N; is not occurring in (4)).

Let us now divide [0, [ into three disjoint measurable sets A,, A, and A, with
A(A)=o,i=1,3and A(A)=1.

If (B.) is a sequence of disjoint measurable subsets of A, with A(B,) = 1 then
it is readily seen that the sequence (15, ) is equivalent to the unit vector basis of
I, and since [7] gives that the unit vector basis of Iy, is equivalent to a block
basic sequence of Iy, it follows that there is a sequence (f.) C Ly (0,©) with
fo Lfn n# m and supp(f.) C A, for all n, so that (f,) is equivalent to the unit
vector basis of Iy,. Since by [8] the unit vector basis of Iy, is equivalent to a
sequence of mutually disjoint elements from Ly (0, 1) it follows immediately
that there is a sequence (g.) C Lu(0,%) of mutually disjoint elements eq-
uivalent to the vector basis of Iy, and so that supp(g,) C A, for all n.

It is easy to see from the form of N, that there is a probability measure v on
(1, so that v»({1}) =0 and so that

M{tx)
M(t)

&) Ni(x)= J,m dv(t), x €[0,1].

The A,-condition on M gives together with (5) that N, is equivalent to N, given
by

M(@2*x)
M(zk) L

©) Nx) =3 u x €10,1]
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where v, = v([2%,2"']D).
Let (C.) be a sequence of mutually disjoint measurable subsets of A; with

14

A(c")=;)M(;k)

foralln

and let for each n (C..) be a disjoint partition of C. into measurable sets with
)\(Cn,k) = v;JM(Z" )
For each n we define

h, = Y 2*-1c, (convergence in Ly (0,)).
£=o

It is now trivial to check that (h,) is equivalent to the unit vector basis of [y,
(and I\,).

Define
ra=f, +g.+h.

Using (4) it easily follows that (r,.) is equivalent to the unit vector basis of Ix.

The other implication in (ii) follows directly from (i). Q.E.D.

If (f.) C Lu(0,) then it is often of interest to investigate, whether or not (f.)
has a subsequence, which is equivalent to a sequence of mutually disjoint
functions. A method to do this is given by Kadec-Pelczynski [3] (see also [8] in
case of the space Lun(0,1) (or for that matter Ly, (A), where A has finite
measure). This method is not directly applicable when we work with Orlicz
function spaces over sets with infinite measure, but it has to be combined with
another technique, which we are going to explain now:

DEerINITION 1.2, A subset X C Ly (0,%) is said to satisfy condition (A), if
the following holds:

(A) Ve>0 VmeN 3fEX sothat [f-lom|<elf].

If B C [0, is a set of finite measure and ¢ >0, then we define the set
Ay (B) to be:

Au(B)={f € Lu(0,»)| suppf C B and

MteB] [f(O|> el fl}>e}.
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We are now able to show:

ProrosiTioNn 1.3. Let X C Lu(0,%) be a subset satisfying condition (A).
Then there is a sequence (f,) C X, which is equivalent to a sequence of mutually
disjoint elements of Ly (0,®).

Proor. Since X satisfies condition (A) we can by induction construct
sequences (m,)C N and (f.)C X, f.# 0 for all n, so that

(l) 4”fn . ]lmm“’I” < 27"—2”f"” n= 1’29' o
(2) 4"fn+l * lioma ” < 2_"_2”f,, " n=12,---

If we define g, = ||f.[|'f. and hn = gusr* Limpm,. fOr all n € N, then we have:

L=l guoll = l1gns s Lomall + [ Anll + 1 @n s imeyl] 2777+ | |

forall n€ N,

and hence ||h.||= 2" for all n.
For the sequence (h¥) C [h.]* biorthogonal to the basic sequence (h,) we

now get:

3 |h*|=2||h.||'=4  foralln

and hence

4 Nl | gner = Ball S 41 gn+ 1+ Tiomall +118rer* Dy, i [1 =277

and from this we obtain:
© S lhtl g~ k=2

By the stability theorems of Bessaga and Pelczynski [1] (5) implies that (g...)
is a basic sequence equivalent to (h,). This proves the proposition.

CoRrOLLARY 1.4. If X is a subspace of Lyu(0,%), then either there is a
normalized sequence (f,) C X, which is equivalent to the unit vector basis of In
for some N € Cu(0,%), orthereisane >0,a B C [0, with 0<A(B)<x and
a subspace Y of A %(B), so that X is isomorphic to Y.
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Proor. Suppose that for no N € Cu(0,») there is a sequence in X
equivalent to the unit vector basis of Ix. Then by Theorem 1.1 and Proposition
1.3, X does not satisfy condition (A). Hence then there is a 8 >0 and an m so
that

() If - loml|Z 8[If| forall fe X

Put B =[0,m] and let P be the projection in L (0,>) defined by Pf=f-14
forall f € Ly (0,%) and put Y = P(X). (1) shows that Px is an isomorphism of
X onto Y. From our assumption on X and Proposition 3 of [8] it now follows
that there is an ¢ >0, so that Y C Ay (B). Q.E.D.

REMARK. Using a refined version of the argument in proposition 1.3 it is
easy to see that if (f.) is a basic sequence in L, (0,%), so that [f.] satisfies
condition (A), then there is a block basic sequence with respect to (f,), which is
equivalent to the unit vector basis of [y for some N € Cy(0,x).

We now turn our attention to the set of p’s for which x” is equivalent at 0 to
a function N € Cy(0,). We have the following theorem.

THEOREM 1.5. If [am Bul N [amn. Bul # < or By < awn then the following
statements are equivalent
(i) p € lam,Bu] VU [am, Bl
(i) x" €CuUCin
(i) x” is equivalent at 0O to a function in Cy(0,%).

Proor. It follows from [8] that (i) is equivalent to (ii) and trivially (ii) = (iii),
so we have left to prove, e.g., (iii) 2 (i).

Let us first note that (iii) actually implies that x* € Cy(0,); indeed, using
the fixpoint procedure of [6] on an element N, € Cy (0, %) with x”* ~ N, we get
that there is a ¢ = 1 with x? € Cy, C Cu(0,%), but then obviously p =gq.
Hence the implication (iii) = (i) will follow, if we prove

(M P& lam, BulU (e Bul = x° & Cu(0,%).

Suppose first that p < min(awm, ar) and let g be chosen so that p <q <
min (am, a ). Then there is a constant C so that

1y (M@x)/(M(t))=Cx* x €[0,1], t €]0,1]

Q2) MUXHIMx)=C xzl, t=1.
From (1) and (2) we conclude that



246 N. J. NIELSEN Israel J. Math.,

B) M(x)/(M(t))=C*x* for all x €[0,1] and all ¢ >0.

(3) gives immediately that if N € Cy,{0,%) then

@4 N@=C7 for x €[0,1]

and hence x? & Cp(0,%).
The case where p > max (Bwm, B ») is treated in the same way. Suppose next that
Bu <p < au, and let us choose ¢q, and g, so that By < g, <p <q:< an.
There exists a constant C >0 so that

B) M@x)IM@a)Hz=C 'x% x €[0,1], t €10,1]

6) MO)xD)IM@ix)=C xzl, t=1.
Let N € Cu(0,) be of the form

M(tx)
M(t)

™ N(x) = f du(t)  x€[0,1]

where u is a probability measure on [1, o[ with {1} =0,andlet K C [l,»[bea
compact set with w(K)>0. Since M satisfies the A,-condition, there is a
constant C, >0, so that

®) N(x)=fl -A:l—((t%)dp(t)gfx A:,’((t:))dp(t)éC\M(x)éC,C"x"‘ x €[0,1].

If now F € C\(0,1) is arbitrary, then we can write F as a convex combination:
9 F(x)=a;Ni(x)+a:Ni(x)+a;Ni(x) x €[0,1]

where N, € Cu., N: € Ci; and N is of the form (7). From (5) and (8) it now

follows that if either a; # 0 or a; # 0, then there is a constant C,, so that
(10) F(x)z=Cxx®™ x €1[0,1]

and if F € Cy, then it follows from (6) that
(1) F(x)=Cx™.

(10) and (11) give that p & Cy(0,®).

THeorREM 1.6. If By < awm, then the following statements are equivalent
() p € [amBul.

(i) x? € Cu(0,x).

(ili) x® is equivalent to a function in Cu(0, ).

Proor. It follows from the proof of the foregoing theorem that it is enough
to show that if 8% <p < am then (iii) holds.

Let g, and g, be chosen so that

Bu<q,<p <q:<au; hence there is a constant C >0 so that
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1 M@xDHM@ax)pzC™ xz1, t=1
Q) (M(x)/(M(t)) = Cx*% x=1,t=1.
Since t""'M(t)= Ct* "' we have

K =J' 1?7 M(t)dt <o,

It is readily seen that if N is defined by
3) NX)=K'[tM@x)t™'dt x€[0,1],
then N € Cy(0,=). We shall prove that N ~ x”. If 0 <x =1 then
@ [uM@Ex)t™dt = Cx* [0 dt = C(p — q1) 'x?
and
S) [*M@x)t™"7'dt = Cx%f\"t* " 'dt = C(q.— p)'x* —C(q.—p) 'x*“,
We also have
(6) [Tt 'M(tx)dt = [}t ™" 7'dt =p~'x".
(4)—(6) give that

K'p"x* =Nx)=K'([(p —q) ' +(q2—p) 'Ix?

and we have proved, what we wanted.

CoroLLARY 1.7. Let M be an Orlicz function so that an=2. If I, is
isomorphic to a subspace of Ly (0,®), then either p =2 or x* € Cu(0, ).

ProoF. Let (f.) C Lu(0, ) be a normalized sequence equivalent to the unit
vector basis of /,. By corollary 1.4 and the remark just after either there is a
normalized block basic sequence (g.) of (f,), which is equivalent to a sequence
of mutually disjoint functions of L, (0,%) or [f,] is iSomorphic to a subspace of
A 5 (B) for some B with 0 < A(B) <. In the first case we get x* € Cy(0,®),
since (g.) is equivalent to (f,) and in the second case it follows from [8]
Corollary 4 that p = 2. Q.E.D.

2. The problem of Orlicz spaces Ly (0,0) being isomorphic to symmetric
function spaces on [0, 1]

We recall that a Banach space L,(0,1) with norm p of Lebesgue measurable
functions on [0, 1] is called a function space, if the following conditions are
satisfied

(i) L,(0,1) is a Banach lattice in the usual ordering of the measurable
functions.



248 N. J. NIELSEN Israel J. Math.,

(i) All indicator functions of measurable sets belong to L,(0, 1).

@ity (f)CL,0,1) f. 1 f a.e. with (p(f,)) bounded = f€ L, (0,1), and
p(f) 1 p(f)

(iv) Thereisaconstant K > 0so that f3|f|dA = Kp(f) forall f € L,(0,1).

Since we only consider the separable case here, we shall also assume (see
9D.

(v) If (E.)asequence of measurable sets with A(E,) - 0, then p(f - 1g,) =
0 forall fe L,(0,1).

We shall say that a function space L,(0,1) is symmetric provided

(vi) For all measure preserving 1-1 maps ¢ of [0,1] onto [0,1], f € L,(0, 1)
implies f-¢ € L, (0,1).

Our first lemma is an easy consequence of a result of Bretagnolle and
Dacunha-Castelle [2].

Lemma 2.1. If Lu(0,) is a reflexive Orlicz space with max(Bu, Bn) <2,
then L,(0,%) can be embedded isomorphically into L,(0,1) for every p,
1 =p < min(awm, a ).

Proor. Let 1=p < min{awm, an). By going to an Orlicz function equivalent
to M if neccesary we may assume that

... XxM'(x) .. . XM'(x)
p < lm:»;nf M)’ p < hn:_.lnf _—_M(x) ,
. xM'(x) . xM'(x)
llmxj’up MO <2 and hm,_.il'lp M) <2 (seee.g.[8]),

from this it follows that there are neighbourhoods U, and U. of 0 and «
respectively so that in U, M(x)x™® is increasing and in U. M(x)x? is
decreasing, and therefore by [2], th. IV 1, Ly (0,) can be embedded into
L,0,1). Q.E.D.

COROLLARY 2.2. Suppose that either 2 < min(awm, an) or max(Bu, Bm) <2
and that Ly (0, ) is reflexive. If Ly (0,%) is isomorphic to a symmetric function
space L,(0,1), then there is an Orlicz function N so that p is equivalent to the
Orlicz norm determined by N (that is Ln(0,1) and L,(0,1) are isomorphic via
the identity map).

Proor. Suppose that max (Bu, B ) < 2. By our assumption and Lemma 2.1
L,(0,1) can be embedded isomorphically into L,(0,1), and by a result of
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Dacunha-Castelle [2], this implies that there is an Orlicz function N with the
properties stated. The case min(awm, a ) > 2 is obtained by duality. Q.E.D.

We are going to show that the Orlicz function N appearing in Corollary 2.2 is
actually equivalent to M at «. This will follow from the following theorem,
where the idea of proof is essentially the same as in the proof of the
corresponding result by Lindenstrauss and Tzafriri [8], th. 4 in case of Orlicz
spaces on [0, 1].

THEOREM 2.3. Let M be an Orlicz function with max (Bum, B#) <2. If Nisan
Orlicz function so that Ln(0, 1) is isomorphic to a subspace of Ly (0,%), then

M(x)
PN

< %0,

Proor. Let T: Ly(0,1) > Ly(0,%) denote an isomorphism, and put for
meN and 1=i=m, ¢im = lig-1ymims ¥Ym = |[Gim ||v and f,n = ¥ Thim.

From the fact that | T7'|"' = ||f..llm =||T| for all i and m together with the
A,-property of M we get that there is a constant C =1 so that

48] C"ng(If.-.m(t)ldtéc meN Isi=m.

It follows immediately from the definition of the f.,.’s that for all possible
choices of signs 6;(= 1) i =1,2---m, we have

) YT = "2 0.fim

=v.ITI.
M
By [2] (p. 470) we get that there is a constant K, only dependent on M, so that

I

where E denotes the average of all 2™ possible signs.
Hence for at least half the choices of signs we have

2, 6fm(1) )dtéKlg :M(lfi.m(t)f)dt,
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(4) J’ M(
[\]

As in the proof of theorem 4 of [8], we can now using (4) inductively for
m, =2" n €N choose signs (07~)",, so that (4) is satisfied and so that the
functions

:2 O:fim (t)’) dt §2K,§::I J:M(lﬁ.m (1)))dt.

S) Yo=2"0"dn, neEN 1=i=m,
are asymptotically orthogonal (i.e. that for all k, there is an n(k) with
[fow; (1) (1) = 2751 = j =k, n = n(k); hence by the Khinchin inequality (¢;) is
equivalent to the unit vector basis of [, for every subsequence (n;) tending
sufficiently fast to «. Since by assumption the unit vector basis of I, is not
sitting on disjoint blocks in L (0, %) we get from this together with Proposition
1.3 that there is a measurable set A C [0, with0<A{A)<wanda d>0so
that

(6) 8|l hullw =lhn - 1afn
where h, = y..T¥. n EN.

We now claim that there is an ¢ >0 so that

(7 A{t € Al |h.()|Ze|halalup) Ze.

Indeed, if not, then by the above and prop. 3 of [8] there is a subsequence (n;)
so that (¢,,;) is equivalent to the unit vector basis of /; and so that (Ti; - 1.1) is
equivalent to the unit vector basis of /- for some F € Cy;. The first statement
gives: | <o SE 4 Tds - 14 is convergent, and since by assumption
there is a constant B, so that x> =< BF(x),0= x =1 the second one gives that
SroitiT; - 14 convergent = =7_,[f;|* <®, and hence F is equivalent to x?,
which is a contradiction. From (1), (4), (6) and (7) we now obtain

® Mk [ MmN S [ MOIT0I0)d =

2n o
2K, D | M(fr(t)dt =2CK,-2" all n,
i=1J0

which gives
9) eM@AIT | 'e8)=2K,C-2" for all n.

By theé A,-property of M (9) gives that there is a constant K, so that
(10) M(yz)=K2" all n.
and hence if y' =x = yya

M@Gx)=M(y#-)=K -2"*' = 2KN(y#) = 2KN(x).
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This concludes the proof of the theorem.
We can now show:

THEOREM 2.4. Let Ly (0,%) be a reflexive Orlicz space so that 2 & [am, Bu] U
{am, Bml. Then:

(i) If Lu(0,) is isomorphic to a symmetric function space L,(0,1) and
either min(am, ax)>2 or max(Bu, Bm) <2 then L,(0,1) is isomorphic to
Ly (0,1).

(i) If Lu(0,) is isomorphic to an Orlicz space Ln(0,1), then M is
equivalent to N at © and [au, Bu] C [awm Bul.

Proor. By Corollary 2.2 (i) is a special case of (ii), so we have only to prove
the latter.

Let M* and N* denote the conjugate Orlicz functions to M, respectively N.
Let us assume that By <2. Since ay->2 we get that

(1) p€Elak-Bx]=>p=2o0rx" € Cu-(0,).

If B >2, then aw >2 and hence (1) and Theorem 1.5 give that either

(2) [an,BrRIC[am BulU [awm Bul
or else a v = B =2, but since Ly (0, 1) contains subspaces isomorphic to [, for
p # 2 by our assumption, this is excluded by corollary 4 of [8]. Hence (2) holds
and therefore either

(3) [anmBRIClam Bul
or

4) [aR, B C [au, Bu].

If (3) occurs then ax«>2 and since L y+(0,%) is isomorphic to L n+(0,1),
L ~+(0,1) contains isomorphs of /, for each p € [a u«, Bu+], and hence by the
corollary cited above [@ m+, Bu+] C [aX+, B~-], which is a contradiction; simi-
larly (4) leads to a contradiction. Hence we must have By <2.

Using Theorem 2.3 we obtain

(5)  supezi (M(x))/(N(x)) <.

From (1) together with the fact that By <2 we get that 85 <2 and therefore
(since L (0, 1) can be embedded into L, (0, 1)) we get from theorem 4 of [8] that

(6) supzi(N(x)/(M(x)) <.

Arguments similar to the ones above also show that [aw, Bu] C [a R, B 1], but by
(5) and (6) an=axn and By = Br. The case, where a3 >2 follows from the
already shown by dualization. Q.E.D.

Let us recall that if N is an Orlicz function and F(x) = lim,_.(N{fx))/(N(t))
exists for every x € [0, 1], then F(x)=x? for some p, 1 =p <. Indeed, since
N satisfies the A,-condition, F is a continuous convex function and if
a € 10,1}, then
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F(ax) _,. Nfatx) _
Foy = im Neany -
so F(ax)= F(a)F(x); it is well known that under these circumstances F has
the properties stated.
We can now show the following theorem:

F(x) x€[0,1],

THEOREM 2.5. Let Ly(0,°) be a reflexive Orlicz space so that for some
p#2,

lim M) _ o

lim 37 x°, x €[0,1].

If one of the two conditions

(i) 2¢€& [am, Bm] and Ly (0,x) is isomorphic to an Orlicz function space on
[0, 1],

(i) Lum(0,%) is isomorphic to a symmetric function space on [0, 1] and either
max (p, Bu) <2 or min(am,p)>2
holds, then M is equivalent to x”.

Proor. We shall suppose that p >2; the other case will then follow by
duality.

By Theorem 2.4 both (i) and (ii) imply that L,,(0,%) is isomorphic to L, (0, 1)
and ay = Bu =p, so let T: Ly(0,©) - Ly (0,1) be an isomorphism onto and
put K-=|T| |IT™|.

Now let ¢ = 1 be an arbitrary number and let (A.) be a sequence of mutually
disjoint measurable subsets of {0, [ with A(A,.)= M(a)' for all n, and define
fo=a-1a, g = Tf, forall n €N.(f.) is clearly isometrically equivalent to the
unit vector basis of the Orlicz sequence space l,, where M,(x)=
M(a)'M(ax), x € [0,1], and hence (g,) is K-equivalent to it.

It now follows from our assumptions that for every £ >0 we have
(g.) € Au(0,1); indeed suppose that for some >0
A{t €10,11] |ga(t)| = ]|ga]]} = £ for all n. By our assumptions on M the formal
identity map I: Ly (0,1) = L0, 1) is continuous, so if =;-,t.g. is convergent,
then =,t.I(g.) converges unconditionally in L(0, 1) and hence =.|t. [’ I(g.)[} <
®, but since ||I1(g.)2 = ¢”|g.|lm = ¢’K ™', this implies that .|t,]*<®. On the
other hand (g.) is equivalent to the unit vector basis of lu, and since
Z|ta | <0 >T,M(|t.]) <>, we would have that M is equivalent to x? at 0,
contradiction.

Since Cy = {x"} it now follows from the proof of proposition 3 in [8] and the
results in [3] that if (&) is a sequence tending sufficiently fast to 0, then there
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are elements g, & A (0, 1),s0 that (g.,) is a basic sequence, 2-equivalent to the
unit vector basis of I,.

Since (f.) is isometrically equivalent to each of its subsequences it follows
that (f.) (and hence the unit vector basis of l,) is 2K-equivalent to the unit
vector basis of /,. By the A,-property of M, this implies that there is a constant
K, independent on a, so that

() Ki'x?=M(a)'M(ax)=K,x"® x €]0,1].

For a = 1 we get that M is equivalent to x® at 0, and if we put x = a~'in (1),
we obtain that M is equivalent to x” at . Q.E.D.

We are also able to prove

THEOREM 2.6. Let M be an Orlicz function, so that

lim M(x) =

p =
lim 275 x? x €[0,1] forsome p, 1=p <=,

If Ly(0,0) is lattice isomorphic to Ly (0,1), then M is equivalent to x".

Proor. This can be proved as Theorem 2.5. Indeed the only place, where
the conditions on M were used there, was in the technique involving the sets
A 5, and we need not use this argument under the assumptions of the present
theorem, since a lattice isomorphism maps disjoint functions onto disjoint
functions. Q.E.D.

The following theorem shows that if L, (0, ) is isomorphic to Ly (0,1) and M
is not equivalent to x”, then there are no “nice’’ isomorphisms between the
spaces.

THEOREM 2.7. Let d(Lu(0,%), Ly (0, 1)) <. If there is a lattice isomorph -
ism T of Lu(0,1) onto Lu(0,%) and an Orlicz function N equivalent to M, so
that

o [ NaThar - [ Nafpae feruom,

then there is a p, 1 = p <o with M equivalent to x°.

Proor. Let 3B, (respectively %.) denote the set of equivalence classes of
the Borel sets in [0, 1] (respectively [0, [ ), and let us define a map ¢: B.. > B,
by

m &(A)=suppT'(14) A € RB..
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Since T is a lattice isomorphism it is easy to see that ¢ satisfies the following
conditions

@) AS(0,%D) = 1.
(3) ¢([0,2[\A) = ¢ ([0, *D\p(A) A € R..
4) ¢(U.A,) = U.p(A,) for mutually disjoint A, € B-.

It is well known that under these circumstances ¢ induces a linear map ¢°
from the space of measurable functions on [0, 1] onto the space of measurable
functions on [0, %[, so that ¢°(1,) = 14-x4,A € B,.

Now let f be a simple function on [0, 1], say f = Z'_,a; 14, where U/_ /A, =
[0,1], ANA; =0, i#].
For every i = n the support of the function f — a; 1,.,; is disjoint from A; and
hence by the definition of ¢ we get that supp(Tf — a; - 1,0.y) is disjoint from
& '(A)), hence for all i =n:
) Tf = aT()1lswy= T(1)$°f on A
and summing over i we obtain (5) everywhere. By continuity of T we get that
(5) holds for all functions in Ly (0, 1).

If we put u = T(1), then we get for all r € [0,<[ and all A € B..

N(r)¢'(AXA) = L N(rlywm)dr = L N(ru)da.

By the uniqueness of Radon-Nikodym derivatives and the continuity of N, we
get for a suitable set A C[0,%[ A(A)=0:
6) N®)yr)=Nr)Nu@)) r €0, te[0,o[\A.
Since u € Ly (0,%) there is a t,, so that 0 <<a = u(t,) # 1, clearly
(7) N{@"x)=N(@a")N(x) forallxz0and n=0,=1,%2,--.
From (7) it follows immediately that there exists a constant K =0 so that
K 'N()N(x)= N(tx) = KN(t)N(x) for all t,x =0, and therefore there is a p,
so that N ~ x”, and the same holds for M. Q.E.D.
Let us now return again to the general case. If M is an Orlicz function and
s €[0,1], then we put M,(x) = (M(sx))/(M(s))x ER. Since M, is equivalent
to M, we get of course that d(Ly(0,1), Lu, (0, 1)) <, but it is easy to see that
in general this distance depends on s, and the question is then, when it is
uniformly bounded in s from above. We have the following theorem.

THEOREM 2.8. Let M be an Orlicz function so that Ly (0, ) is isomorphic to
Lu(0,1). Then there is a constant K, so that d(L.s(0,1), L, (0,1)) = K for all
s €1]0,1].
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Proor. Let us first recall that if X and Y are two Banach spaces, then the
space (X@Y), is the space X xY equipped with the norm |(x,y)| =
max(|[x|. |y ) for (x,y) € X x Y.

If a =1 is arbitrary, then it is easy to see that Ly(a,>) is isometric to
Lm(0,2) and that

(1) Lu(0,a)=Lu(0,1)® Lu(1,a).

(2) Lu(0,%)=Lu(0,a)® Lu(a,»).

Letting *“ ~ " denote ‘‘isomorphic to ’

L}

we have the following scheme:

(3) Ly(0,1) ~ Lu(0,2) = Ly (0,a)® Lu(a,») ~
Ly(0,a)® Ln(0,%) ~ (Lu(0,a)® Lu(0, 1)) ~

(Lm0, DD Lu(1,a)) @ Lu(0, 1)) ~
(Lu (0, D@ Lu(l,a)) ~ Lu(0,a).

Using the isomorphisms in (3) to compute d(Ly(0,a), Ly (0, 1)) we find that
there is a constant K independent of a, so that

4) d(Lw(0,a), Lu(0,1)=K foralla=]l1.

Since Ly (0, a) is readily seen to be'isometric to Lu, (0,1) with s = M '(a™"),
the conclusion of the theorem follows directly from (4). Q.E.D.

Theorem 2.8 naturally leads to the following conjecture.

CoNJECTURE 2.9. Let M be an Orlicz function and let {N.|a € I} be a
family of Orlicz functions, each having the same A,-constant as M. If
sup.d(Lu(0,1), Ly, (0,1)) <, then there is a constant K independent on a so
that

K7'N.(x)=M(x)= KN, (x) x =1

If this conjecture is answered positively, then it would follow from Theorems
2.4 and 2.8 that under the conditions in 2.4 an Orlicz space Lun(0,%) is
isomorphic to a symmetric function space on (0, 1) (an Orlicz space on (0,1)
under 2.4 it) if and only if M ~ x” for some p,1 <p <. Indeed, M and the
family {M;|s €]0,1]} will satisfy the conditions of 2.9, and hence there would
be a constant K so that

(*) K 'Mx)MG)=M@Gsx)= KMG)M () 0<s<l xz=1

and it is well known that an Orlicz function satisfying (*) is equivalent to x” for
some p 1=p <,
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In theorem 4 of [8] it is shown that if M and N are Orlicz functions with
1,2 & [awm, Bl so that Ly (0, 1) is isomorphic to Ly (0, 1), then M is equivalent
to N at «. One could hope that the proof of this (similar to our proof of 2.3)
would show that the equivalence constant between M and N only depends on
d(Ly(0,1), Ly(0,1)) and the A,-constants of M and N, and hence answer
Conjecture 2.9. Unfortunately this is not the case, indeed, the main point in the
proof (as in 2.3 here) is to construct a “‘characteristic”” sequence in Ly (0, 1) with
the aid of the Dacunha-Castelle inequality (Formula (3) in 2.3), whose image in
Ly (0,1) is contained in A 5, for a suitable . While it is easy to check that the
constant in the above mentioned inequality only depends on the A,-constant of
M, the £ obviously depends on the chosen sequence, and hence the finally
computed constant will also do it. If we apply this technique to the setting of 2.9
we will get a family {e,} of numbers and it seems impossible to show that this
family is bounded away from 0, even in the case, where the family is
{M;|0<s =1}.

As it is seen, it seems as the Kadec-Pelczynski “‘ A u-technique” is too weak
to give an answer to Conjecture 2.9. Recently, however, Peiczyfiski and
Rosenthal [11] obtained finite dimensional versions of the resuits of Kadec and
Pelczynski [3] on L,-spaces, and it is likely that the methods used here would
be strong enough to solve conjectures like 2.9, if they can be carried over to the
Orlicz space case (but that this is possible, is not so straightforward as in case
of the Kadec-Pelczyniski technique, and so far we have been unable to do it).

3. Some additional remarks and open problems

The main problems left open in this paper are of course centered around the
question, whether or not Theorem 2.5 can be generalized to the class consisting
of all Orlicz functions.

Of other problems on the Orlicz spaces Ly(0,%) we can mention:

ProBLEM 3.1. Let M and N be Orlicz functions, so that 1,2 & [am, Bu] U
[aw, Bl Suppose that Lu(0,) is isomorphic to Ln(0,%). Are M and N
equivalent? What is the situation if 1,2 € [am, Bu] U [am, Bu]?

Applying Theorem 2.3 and the technique of the proof of Theorem 2.4 it is not
difficult to show that if M and N satisfy the conditions of the first question in
3.1, then M and N are equivalent at =, so the hard task is to decide how the
Orlicz functions behave close to 0. Here one should perhaps keep in mind that
while the problem similar to 3.1 in the case [0, 1] is solved positively by theorem
4 of [8], then there are also examples of non-equivalent Orlicz functions M and
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N, so that ly, and [y are isomorphic. The second question and even the similar
one for the case of [0, 1] are both wide open. The reason for dividing Problem
3.1 into two cases is that in the first case it will be possible to use a reflexivity
argument together with the important Theorem 2.3, which cannot be general-
ized, at least not to the case, where B =2, since L(0,1) is isomorphic to a
subspace of every Orlicz space Lu(0,») (via the Rademacher functions on
{0, I) and the Khinchin inequality). We believe however that 3.1 can be proved
in the affirmative without using 2.3.

Similar remarks on the role of theorem 2.3 can be applied to the following
problem:

ProBLEM 3.2. Can the restriction 1,2 & [am, Bu] U [a 3, B ] be removed in
Theorem 2.4 (ii)?

Is (i) of Theorem 2.4 true under the same conditions on M as in (ii)?

The second question in 3.2 will follow from

ProBLEM 3.3. If L, (0,%) is isomorphic to an L,(0,1), is L,(0,1) then
isomorphic to an Orlicz space on [0,1]?

We strongly believe that 3.3 can be answered in the affirmative by a proof,
which does not involve imbeddings into L,-spaces as Corollary 2.2 does.

Let us finally give a few important examples of Orlicz functions, different
from the x"-functions, belonging to the class considered in 2.5 (and hence of

Orlicz spaces on (0, =), which are not isomorphic to symmetric function spaces
on (0, 1)).

ExampLE 3.4. Let 1<p#2 and let N be an arbitrary Orlicz function,
whose interval [an, Bv] is to “the same side” of 2 as p. If we put M(x) =
x*® log x in a suitable neighbourhood of ©, M(x) = N(x) in a suitable neighbour-
hood of 0 and modify M in between to be convex, then M belongs to the class

of 2.5. The same is true in the case, where we put M(x)=2"/logx in a
neighbourhood of .

ExampLE 3.5. Let K C]1,%[ be an infinite compact set so that p =
sup K#2, let u be a probability measure on K with support K and so that
u{p}=0,and let N be an Orlicz function with [a~, B~] to ‘‘the same side” of 2
as p. Define:

M(x)= fxx*du (s) in a suitable neighbourhood of .

M(x)= N(x) in a suitable neighbourhood of 0.
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Since it is easily shown that im,_. (M {tx)/(M{#)=x? forall x € [0,1], M
belongs to the class of Orlicz funtions considered in 2.5, and since u{p} =0, M
is not equivalent to x” at .

Other examples can be found in [6], [7) and [8].

Appendix

In this section we shall briefly comment on some recent results of Dacunha-
Castelle [12] and Dacunha-Castelle and Schreiber [13] and their connection
with the subject of this paper. If M is an Orlicz function, then we put
M (x) = M(x) A x2 With this notation the following result is proved in [13].

THEOREM A l. Let X be a Banach space with symmetric basis. Then X
embeds into Ly (0, 1) with2 & [a u.Bml if and only if X is isomorphic to an Orlicz
sequence space lg with

F € Cq(0,) if Bu<2.
Feconv(x* En). if amn>2.

The question is now, if a similar result holds in the case of Orlicz spaces
L (0, )?
We have not been able to answer this question. However, the following holds
trivially:

ProposITION A2. Let X be a subspace of Ly (0,%), where 1 < min(aum, an),
max (B, Bm) < 2. If X has a symmetric basis, then X is isomorphic to an Orlicz
sequence space.

Proor. If 1<p < min(awm, ay), embed L, (0,%) into L,(0,1) and apply
Theorem A 1.

The proof of Theorem A 1 uses rather heavy probabilistic methods, which
cannot be directly transferred to the case of the Orlicz function spaces
L (0,%). Also it seems impossible to reduce this case to that of Ly (0,1) via
techniques similar to the condition (A) of Section 1. However, we strongly
believe that Theorem A 1 holds in some form and hope to be able to treat this in
a future paper.

In [12] the problems of embedding Orlicz function spaces into Orlicz
function spaces are treated. The result most interesting for the subject of this
paper is the following:
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THEOREM A 3. Let M and N be non-equivalent Orlicz functions with B 5 < 2.
Then Ly (0,») embeds into Lu(0,1) if and only if

M(tx
M(t)

NEconv{ )Ite]O,l]}

(closure in the topology of uniform convergence on compacta).
This result is of course not useful for us in connection with the problems of
Section 2, since we need to consider the case M ~ N, which is still unsolved.

In his discussion of the problems in the case M ~ N Dacunha-Castelle
touches shortly the main problem of this paper. He raises a question, the
affirmative answer of which will solve our problem. It is not difficult to see that
his question is equivalent to the question of conjecture 2.9.
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