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ON THE ORLICZ FUNCTION SPACES LM (0, 

BY 

NIELS JORGEN NIELSEN 

ABSTRACT 

The isomorphic properties of the Orlicz function spaces L~,(0,~) are investi- 
gated. Especially we treat the question, whether the Lo-spaces are the only 
symmetric function spaces on (0,~), which are isomorphic to a symmetric 
function space on (0, 1). For the class of slowly varying Orlicz functions we 
answer this in the affirmative, and we also prove some results concerning the 
general case, which indicate, that it might be true there also. 

I n t r o d u c t i o n  

It is a well known fact  that the space Lp (o,oo) 1 =< p < oo is isometric to L.(0,  !) 

(even lattice isometric),  and it is therefore  natural to ask the question, whether  

the L, (0, ~ ) - spaces  are the only symmetr ic  function spaces on (0, ~), which are 

isomorphic to symmetr ic  function spaces on (0, I). Mityagin [10] has conject-  

ured that indeed it is so. 

In this paper  we investigate this conjecture  for  the class of symmetr ic  

function spaces consisting of the Orlicz function spaces LM (0, ~), where M is 

an Orlicz function satisfying the A2-condition. 

In Section 1 we investigate the isomorphic propert ies  of the spaces LM (0, oo); 

e.g. we show that the set of Orlicz functions N, for  which the unit vector  basis of 

the sequence space IN is equivalent  to a sequence of functions in L .  (0, ~) with 

mutually disjoint support  consists exact ly of those Orlicz functions,  which up 

to equivalence belong to a natural compact  convex subset  of C(0. I). This 

theorem is similar to the corresponding results for  the spaces IM and LM (0, I) 

proved by Lindenstrauss  and Tzafriri  [7], [8], and also the proof  of it is close to 

theirs. We also show that the set of those p's (I =<p < ~ ) ,  for which the unit 

vector  basis of lp is equivalent to a sequence of functions in LM(0,~) with 

disjoint supports ,  is either an interval or the union of two intervals, namely the 

two intervals [aM,/3M] and [a ~,/3 ~] associated to respect ively IM and LM(0, 1) 

in [8]. Finally we modify  the "A ~- technique"  of Kadec  and Pe]czyfiski [3] to 
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get a technique, which can be applied to function spaces over  sets of infinite 

measure. 

In Section 2 we present  our main results, related to the conjecture above. 

Through a series of propositions and theorems we show that if a reflexive 

Orlicz space LM(0, ~) with the intervals [aM,/3M ] and [a ~,/3 ~] to the "same side 

of 2" is isomorphic to a symmetric function space on [0, I], then LM(0,~) is 

isomorphic to LM(0,1) and [aM,/3M] C[a~ , / 3 ~ ] .  The same is true if the 

condition above is loosened to 2 ~ [aM,/3M ] t..l [a ~,/3 ~] and the above symmet-  

ric function space is an Orlicz space. These results give, of course, many 

examples of Orlicz function spaces on (0,~) which are not isomorphic to any 

symmetric function space on [0, 1] (namely spaces, where the two intervals are 

disjoint). 

The above results are then used to show one of the main. results in the 

section, namely an affirmative answer to the above conjecture for  the Orlicz 

spaces LM (0, ~), where M is an Orlicz function which is slowly varying at 

(i.e. lim,~(M(tx))/(M(t)) exists for  all x ~ [0, I]), and whose intervals satisfy 

the above conditions. 

Finally we present some general results, which indicate, how the conjecture 

might be proved for general Orlicz spaces. 

O. Preliminaries 

In this paper we shall use the standard notation of the theory of Banach 

spaces, as it appears in [5]; let us just here recall that if X and Y are Banach 

spaces, then the Banach distance d(X, Y) between X and Y is defined by 

d(X, Y) = inf {ll TII II T-'Ill  T isomorphism of X onto Y}, 

if X and Y are isomorphic and ~ else. 

By an Orlicz function we shall always mean a continuous convex non- 

decreasing function M: [0,oo[ ~ [0,~[, so that M(0) = 0, M(I )  = 1 and M(x) > 0  

for x > 0. 

The Lebesgue measure on [0, ~[ will in this work always be denoted by the 

letter A. 

Let  M be an Orlicz function and let A C_ [0, co[ be a A-measurable set. The 

Orlicz function space Lu(A) consists of those measurable functions [ defined 

on A, for  which there exists an r, so that L(f)  = fAM(r-'{fl)d;t < ~. With the 

norm Ilill = inf{r ]L(f)=< 1} LM(A) is a Banach space. 

Similarly the Orlicz sequence space IM consists of all those sequences (t ,)  of 

scalars for  which there is an r > 0 with 
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L((t . ))  = ~ M ( r - ' l t . ] ) < 2 .  
n - I  

With the norm II(t.)ll = in f {r{L( ( t . ) )  _~ 1} is a Banach space. For  the basic 

propert ies  of Orlicz spaces we refer  to [9]. In this paper  we shall only work with 

separable Orlicz spaces IM, LM (0, 1) and LM (0, 2), and therefore  we shall a lways 

assume (unless otherwise stated) that the Orlicz function M satisfies the 

a2-condition; i.e. there is a constant  K => ! so that 

(*) M ( 2 x ) -  < _ K M ( x )  x >-0. 

The smallest  constant  which can be used in this inequality is called the 

A..-constant of M. 

Here  we should keep in mind that when we consider the space IM only the 

values of M close to 0 are important ,  and for  the space LM (0, 1) only the values 

close to 2 are important ,  while for LM(0, 2) the values of M both close to 0 and 

to 2 matter.  (See e.g. [9]). Therefore  when we consider the sequence space IM 

we shall often consider M as an element of C(0, 1). 

The sequence (e°) C IM, where e. = (6.  ~ )~, is called the unit vector  basis of IM ; 

when M satisfies the A2-condition. (equivalently when I .  is separable)  (e.)  is a 

symmetr ic  basis in l . .  

If M and N are Orlicz functions,  then we say that M and N are equivalent,  if 

there is a constant  K = 1, so that 

(**) K - ' N ( x )  <- M ( x )  <- K N ( x )  x >- O. 

We shall say that M and N are equivalent  at 0 (respectively at 2). if (**) holds 

in a neighbourhood of 0 (respectively 2). 

For a detailed study of the isomorphic propert ies  of  the spaces IM and 

LM(0, I) we refer  to [4], [6], [7] and [8]; see also [5]. 

If M is an Orlicz function, then we shall make use of the following important  

sets related to M: 

M(t"x)  I E~,=  N E C ( 0 , 1 ) I 3 ( t . ) C _ R  t. ~oo  with N ( x ) - -  lim. ~ j .  

C ~  = c o n v  E~, (closure taken in C(0, 1).) 

For  0 < s < 1 we define 
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E~.~={N~C(O, 1)I3t O<t<--_s with 

CM.~ = cony EM... 

EM = (') E~.s. 
O<s ;Ii1 

CM = c o n y  EM. 

Israel J. Math., 

M(tx)~ 
N(x) = M(t) J 

It follows from the A2-condition that all the above sets are compact  subsets 

of C(0, I). 
It was proved in [7], that the unit vector basis of an Orlicz sequence space IN 

is equivalent to a block basic sequence of the unit vector basis of IM if and only 

if N E CM.~, and in [8] it is shown that the unit vector basis of IN is equivalent to 

a sequence of functions in LM(0, I) with mutually disjoint supports if and only 

i f N  E C S .  
If M is an Orlicz function then the following numbers are important: 

a~ =sup{p l sup M(tx) } 
o<x,,~l M(t)x ~ < oo  

M(tx) > 0} 
/3u = inf {p [ o i n f  M(t)xP 

ct~=sup{p]sup M(x)yp } 
~,,y~-i M(xy)  < ~ 

/ 3 ~ = i n f  p l i n f  ~ ~ 0 .  

It is proved in [8], that both intervals [aM,/3M] and [a~,/3~] are compact  

subsets of [ i, ~[ and that p E [aM,/3M ] if and only if the unit vector basis of I, is 

equivalent to a block basic sequence of the unit vector basis of IM, while 

p E [a~,/3~] if and only if the unit vector basis of I, is equivalent to a 

sequence of functions in LM(0, I) with mutually disjoint supports. 

I. The isomorphic properties of the spaces LM(0,~) 

In this section let M be a fixed Orlicz function and define the sets: 
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E M ( 0 , ~ ) = { N E C ( 0 , 1 ) I : : I t > 0  with N(x)  - M ( t x )  0 < x < l }  
M(t)  = = " 

CM (0, ~) = conv EM (0, ~). 

It follows immediately from the A2-condition of M that both EM(0,~) and 

CM(0,oo) are compact  subsets of C(0, l). 

Our first theorem shows that the set CM (0, oo) plays the same role for LM (0, oo) 

as CM.1 and C ~ do for the spaces IM and LM (0, l) respectively. The proof  of it is 

similar to the corresponding results in [7] and [8]. 

THEOREM 1. I. 

(i) Every normalized sequence of mutually disjoint * elements from LM (0, ~) 

has a subsequence, which is equivalent to the unit vector basis of an Orlicz 

sequence space IN for some N ~ CM(O, ~). 

(ii) If N is an Orlicz function, the unit vector basis of IN is equivalent to a 

sequence of mutually disjoint elements of LM (0, ~) if and only if N is equivalent 

at 0 to a function in C~(O,~). 

PROOF. 

(i): Let (f,) _C Lm(0, m), with Ilfnll = 1 and fn ±fro for n #  m and put a ,  = 
suppf~. 

For each n E t~ we define the Orlicz function 

(1) M,(x)  (t)l)d t = M(x I f ( t ) [ )  dtz(t) 

where # is the measure with dtz/dt = M(I.LI). 

Since tz (0, ~) =/~ (A,) = 1 it follows immediately from (1) that M, E CM (0, oo). 

From the compactness  of CM(0, ~) it follows that there is a subsequence (M.~) 
of (Mn) and an N E CM(0,oo) so that 

(2) IMn~(x)-N(x)l  < 2  -j for allx E [0, 1],all j ~ l~ . 

Since XjtLfn~ converges if and only if EjM, j (1 tjl) < ~ it follows from (2) that (/~j) 

is equivalent to the unit vector basis of IN. This finishes the proof of (i). 

* Two elements f, g ELM (0, oo) are said to be disjoint, if they have disjoint supports, and in 
that case we write f t g. 
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(ii): Let  N ~ Cm (0, ~). By the Krein-Milman theorem we get that there is a 

probability measure /z on EM(0,~) so that 

(3) N ( x )  = f~ G(x)dl~(G) x E [0, 1]. 
M(O.~) 

If we put a,  = /z  (E~,,), a2 = t x (E~ \Eu: )  and a3 = 1 - a , -  as, then it follows 

f rom (3) that N can be written as 

(4) N = a , N j + a 2 N 2 +  a3N3, 

where N, E CM.~, N2 E C~ and 

(5) 
± 

N3(x ) = I G (x)dlz (G). 
013 .] EM(O,=)\Em.IUE~ 

(If for  an i, a, = 0, N~ is not occurring in (4)). 

Let  us now divide [0,~[ into three disjoint measurable sets A~, A2 and A3 with 

A(A,) = ~, i = 1, 3 and A(A2)= 1. 

If (B.)  is a sequence of disjoint measurable subsets of A ~ with A (B,)  = I then 

it is readily seen that the sequence (1R.) is equivalent to the unit vector  basis of 

IM, and since [7] gives that the unit vector  basis of IN, is equivalent to a block 

basic sequence of IM, it follows that there is a sequence (f,) C_ LM(0, ~) with 

f,  ±Ira n ~  m and supp(f , )  C A~ for all n, so that (f,) is equivalent to the unit 

vector  basis of IN,. Since by [8] the unit vector  basis of IN2 is equivalent to a 

sequence of mutually disjoint elements from LM(0, 1) it follows immediately 

that there is a sequence (g,)C_ LM(0,~) of mutually disjoint elements eq- 

uivalent to the vector  basis of IN2 and so that supp(g,)  C A2 for all n. 

It is easy to see from the form of N3 that there is a probability measure v on 

[1,oo[ so that v({1})= 0 and so that 

f f  M( tx )  dr ( t ) ,  x ~ [0, I]. (5) N3(x) = M( t )  

The A2-condition on M gives together with (5) that N3 is equivalent to N ,  given 

by 

(6) N,(x  ) = ~o vk M (2~x) M(2ki , x E [0, 1] 
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where vk = V([2k, 2k÷'[). 

Let (C,) be a sequence of mutually disjoint measurable subsets of A3 with 

l,'k 

A ( C . ) =  = M(2 ~) for all n 

and let for each n (C..k) be a disjoint partition of C, into measurable sets with 

A(C,.~) = v~/M(2k). 
For each n we define 

h. = ~ 2 k • lco., (convergence in LM(0,~)). 
k=0 

It is now trivial to check that (h,) is equivalent to the unit vector basis of IN, 

(and IN~). 

Define 

I", = f , + g , + h , .  

Using (4) it easily follows that (r,) is equivalent to the unit vector basis of IN. 

The other implication in (ii) follows directly from (i). Q.E.D. 

If ([,) _C LM (0, ~) then it is often of interest to investigate, whether or not (.L) 

has a subsequence, which is equivalent to a sequence of mutually disjoint 

functions. A method to do this is given by Kadec-Pelczyfiski [3] (see also [8] in 

case of the space LM(0, I) (or for that matter LM(A), where A has finite 

measure). This method is not directly applicable when we work with Orlicz 

function spaces over sets with infinite measure, but it has to be combined with 

another technique, which we are going to explain now: 

DEFINmON 1.2. A subset X C_ LM(0,~) is said to satisfy condition (A), if 

the following holds: 

(A) r e > 0  V r n E N  : l f E X s o t h a t  [[[. Ito..lll< ell[[ [. 

If B C_ [O, oo[ is a set of finite measure and e > O, then we define the set 

A~(B)  to be: 

A ~ (B) = {f E L M  (0, oo) [ supp f C_ B and 

A{t E B  I I f ( t ) l>  E )lfll}>e}. 
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We are now able to show: 

PROPOSITION 1.3. Let X C_ L u ( 0 , ~ )  be a subset satisfying condition (A). 

Then there is a sequence (f. ) C_ X, which is equivalent to a sequence of  mutually 

disjoint elements of  LM (0, ~). 

PROOF. Since X satisfies condi t ion  (A) we can by induct ion cons t ruc t  

sequences  (m.)C_ N and (f , )C_X, f , ~ 0  for  all n, so that  

( l )  411I".'],  . . . .  , I I<2 -" -= I [L I I  n = 1 , 2 , . . .  

(2) 411.f.+," 1,o...~ll < 2-"-=11.f. II n = 1 , 2 , . . .  

If we define g. = {{/. {{-'/. and h. = g.+,.  I i . . . . . . .  j fo r  all n E N, then we have:  

1 = IIg.+,ll ~ Ilg.+," ltom.,ll + {Ih.II + Ilg.+," 1, . . . . . .  tll ~ 2 - " - 3 +  IIh.II 

fo r  all n E  N, 

and hence  IIh.ll>2 -' fo r  all n. 

For  the sequence  (h*)  _C [h. ]* b ior thogonal  to the basic sequence  (h . )  we 

now get: 

(3) II h*.ll <-- 2 II h. I1-' --< 4 for  all n 

and hence  

(4) I{ h *ll t{g.+, - h. II -< 4[ {{g.+, • 1 to.,..i]l + fig.+," 1, . . . . . .  t Ill --< 2-"- '  

and f rom this we obtain:  

(5) ~ IIh*ll Hg.+,- h.[t ~ 2  ' .  
n = l  

By the stability theo rems  of  Bessaga  and Pe lczynsk i  [1] (5) implies that  (g,+,) 

is a basic sequence  equiva len t  to (h.) .  This  p roves  the proposi t ion.  

COROLLARY 1.4. I f  X is a subspace of  LM(0,~) ,  then either there is a 

normalized sequence ft ,)  C_ X, which is equivalent to the unit vector basis of  IN 

for some N ~ CM (0, ~), or there is an e > 0, a B C_ [0, ~[ with 0 < A (B ) < ~ and 

a subspace Y of  A ~ ( B ) ,  so that X is isomorphic to Y. 
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PROOF. Suppose that for no N E CM(0,2) there is a sequence in X 

equivalent to the unit vector  basis of l~. Then by Theorem 1.1 and Proposit ion 

1.3, X does not satisfy condition (A). Hence  then there is a ~ > 0 and an m so 

that 

(1) ltf.i~o~,lI_->~jlflj foral l  rEX. 

Put B = [0, m] and let P be the projection in LM(0,~) defined b y / f f  = f .  1~ 

for  all f E LM(0,2) and put Y = P ( X ) .  (I) shows that Pix is an isomorphism of 

X onto Y, From our assumption on X and Proposit ion 3 of [8] it now follows 

that there is an e > 0 ,  so that Y C_ A ~ ( B ) .  Q.E.D. 

REMARK. Using a refined version of the argument  in proposit ion 1.3 it is 

easy to see that if ([,) is a basic sequence in LM(0,2), so that [f,] satisfies 

condition (A), then there is a block basic sequence with respect  to (f,),  which is 

equivalent to the unit vector  basis of IN for  some N E CM(0,2). 

We now turn our attention to the set of p ' s  for which x p is equivalent  at 0 to 

a function N E CM(0,2). We have the following theorem. 

THEOREM 1.5. I f  [aM, tiM] fq [ a ~ , / 3 ~ ] ~  or /3~ < a ~  then the following 

statements are equivalent 

(i) p ~ [aM,/3M ] u [a ~,,/3,7,]. 
(ii) x ~ E C M U C ~ .  

(iii) x"  is equivalent at 0 to a function in CM(O,~). 

PROOF. It follows f rom [8] that (i) is equivalent to (ii) and trivially (ii) =), (iii), 

so we have left to prove,  e.g., (iii) ::> (i). 

Let  us first note that (iii) actually implies that x p ~ CM(0,2); indeed, using 

the fixpoint procedure of [6] on an element  N~ E CM(0, 2) with x ~ - N,  we get 

that there is a q _>-I with x q ~ CN~ C_ CM(0,2), but then obviously p = q. 

Hence  the implication (iii) =), (i) will follow, if we prove  

(1) p ~  [O~M,/3MI U [a ~,/3,7,] f f  XPg C,~(0,oo). 

Suppose first that p < min(aM, a ~ )  and let q be chosen so that p < q  < 

min(a,~, a ~,). Then there is a constant  C so that 

(I)  (M( tx ) ) / (M( t ) )<=Cx ~ x E [ 0 , 1 ] ,  t ~ ] 0 , 1 ]  

(2) ( M ( t ) x q ) / ( M ( t x ) ) < - C  x >- l, t >= l. 

From (1) and (2) we conclude that 
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(3) (M(tx)) / (M(t))<=C2x ~ for all x ~ [0,1] and all t >0 .  

(3) gives immediately that if N E C,~(0,oo) then 

(4) N(x)<=C:x  ~ for  x E [0 ,1 ]  

and hence x ~  Cu(0,oo). 

The case where p > max ([3u,/3 ~) is treated in the same way. Suppose next that 

[3M < p  < a ~ ,  and let us choose qj and q2 so that [3M < q ) < p  < q 2 < a ~ .  

There exists a constant C > 0 so that 

(5) (M( tx ) ) / (M( t ) )  >- C - ' x  ~, x E [0, 1], t E ]0, 1] 

(6) (M( t )x" ' ) / (M( tx ) )  <= C x >= 1, t >= 1. 

Let  N E CM(0,oo) be of the form 

f ~ M( tX)d l z ( t )  x E [0, 1] (7) N ( x )  = M ( t )  

where p. is a probability measure on [ 1, oo[ with tz { 1 } = 0, and let K C_ [ 1, oo[ be a 

compact  set with t z ( K ) > 0 .  Since M satisfies the A=-condition, there is a 

constant C, > 0, so that 

(8) N ( x ) = j l  ---M-~Up.tt)>-_ ( ) d~( t )>=CiM(x)>=C~C-'x  q, x E [ O , l ] .  

If now F E CM(0, 1) is arbitrary, then we can write F as a convex combination: 

(9) F ( x ) = a , N , ( x ) + a 2 N 2 ( x ) + a 3 N 3 ( x )  x E[O,I]  

where N, ~ CM.,, N2 E C~ and N3 is of the form (7). From (5) and (8) it now 

follows that if either a~ ¢ 0 or a3 ~ 0, then there is a constant Cz, so that 

(10) F(x)>-C2x q' x E[O, 1] 

and if F E C~,, then it follows from (6) that 

(11) F(x)<=Cx q2. 

(10) and (11) give that p ~  CM(0,~). 

THEOREM 1.6. I[ [3 ~ < aM, then the [ollowing statements are equivalent 

(i) p e [ a  ~,,/3M ]. 
(ii) x p ~ CM(0,oo).  

(iii) x p is equivalent to a [unction in CM(O,~). 

PROOF. It follows from the proof of the foregoing theorem that it is enough 

to show that if [ 3 ~ < p  < a u  then (iii) holds. 

Let  ql and q2 be chosen so that 

[3~< ql < P < q2< aM; hence there is a constant C > 0  so that 
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(I) ( M ( t ) x ~ ' ) / ( M ( t x ) )  >- _ C -~ 

(2) ( M ( t x ) ) / ( M ( t ) )  <- Cx  % 

Since t - " - ~ M ( t )  <= Ct  ~' ~-~ we have 

x>=l ,  t=>l  

x_<l ,  t_-<l. 

247 

~1 ~ K = t - P - ~ M ( t ) d t  <o~. 

It is readily seen that if N is defined by 

(3) N ( x ) = K - ' f T M ( t x ) t - P - ' d t  x E [ 0 , 1 ] ,  

then N E CM(0,~). We shall prove that N - xP. If 0 < x  -< 1 then 

(4) f T / x M ( t x ) t - P - J d t  <= Cxq,f~/xtq'-P-~dt = C ( p  - q~)-~x p 

and 

(5) f t / X M ( t x ) t - P - ' d t  <= Cxq2f~/xtq:- '- 'dt  = C ( q 2  - p ) - ' x  p - C ( q 2 - p ) - ' x  ~ . 

We also have 

(6) f r / x t - ' - ' M ( t x ) d t  >= f r / ~ t - ' - ' d t  = p - ' x  p. 

(4)-(6) give that 

K - ' p - ' x  ~ <-- N ( x )  <_ K-t([(p - ql)  -1 + ( q z -  p ) - ' l x  p 

and we have proved, what we wanted. 

COROLLARY 1.7. L e t  M be an Orl icz  f u n c t i o n  so t ha t  a ~ > - 2 .  I f  I, is 

i s o m o r p h i c  to a s u b s p a c e  o f  LM(0,~), then  ei ther  p = 2 or  x p E CM(0,~). 

PROOF. Let (f.) _C LM (0, ~) be a normalized sequence equivalent to the unit 

vector basis of l,. By corollary !.4 and the remark just after either there is a 

normalized block basic sequence (g.) of (f,), which is equivalent to a sequence 

of mutually disjoint functions of Lu (0, ~) or [f, ] is isomorphic to a subspace of 

A h ( B )  for some B with 0 < A ( B ) < ~ .  In the first case we get x p E CM(0,oo), 

since (gn) is equivalent to (f~) and in the second case it follows from [8] 

Corollary 4 that  p = 2. Q.E.D. 

2. The problem of Orlicz spaces LM (0,~) being isomorphic to symmetric 
function spaces on [0,1] 

We recall that a Banach space Lp(0, 1) with norm p of Lebesgue measurable 

functions on [0, 1] is called a function space, if the following conditions are 

satisfied 

(i) Lp(0, 1) is a Banach lattice in the usual ordering of the measurable 

functions. 
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(ii) All indicator functions of measurable sets belong to Lo(0, 1). 

(iii) (f.)C_Lp(0,1) f~ l ' f  a.e. with (p(f,)) bounded = > / ~ L p ( 0 , 1 ) ,  and 

pff.) t p(f). 
(iv) There is a constant K > 0 so that f~[fldA <- Kp( f )  for all f ~ Lp(0, 1). 
Since we only consider the separable case here, we shall also assume (see 

[9]). 
(v) If (E,)  a sequence of measurable sets with A(E,) ---) 0, then p ( f .  IE.) 

0 for all [ ~ Lp (0, I). 
We shall say that a function space Lp(0, 1) is symmetric provided 

(vi) For all measure preserving 1-1 maps tk of [0, 1] onto [0, 1], f E Lp(0, 1) 

implies f .  4~ E L~ (0, 1). 
Our first lemma is an easy consequence of a result of Bretagnolle and 

Dacunha-Castelle [2]. 

LEMMA 2.1. If LM(0, oo) is a reflexive Orlicz space with max(/3M,/3 M)< 2, 
then L,~(O, oo) can be embedded isomorphically into Lp(O, 1) for every p, 

1 _<-p < min(aM, aM). 

PROOF. Let 1 < p < min(aM,  a ~). By going to an Orlicz function equivalent 

to M if neccesary we may assume that 

xM'(x)  xM'(x)  
p < lim,_.oinf M(x)  ' p < limx~inf M(x)  ' 

xM'(x)  xM'(x)  
limx_.osup - - <  2 M ( x )  and iimx_®sup M(x)  < 2 (see e.g. [8]), 

from this it follows that there are neighbourhoods Uo and U® of 0 and oo 
respectively so that in Uo M(x)x  -p is increasing and in U® M(x)x  -2 is 
decreasing, and therefore by [2], th. IV 1, LM(0, oo) can be embedded into 

Lp(0, 1). Q.E.D. 

COROLLARY 2.2. Suppose that either 2 <  min(au, a~) or max(/3u, /3~)<2 

and that Lu (0, ~) is reflexive. If LM (0, oo) is isomorphic to a symmetric function 

space Lp(0, 1), then there is an Orlicz function N so that p is equivalent to the 

Orlicz norm determined by N (that is LN(0, I) and L~(0, l) are isomorphic via 

the identity map). 

PROOF. Suppose that max(tiM,/3 ~ ) <  2. By our assumption and Lemma 2.1 
L,(0, 1) can be embedded isomorphically into L,(0, I), and by a result of 
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Dacunha-Castelle [2], this implies that there is an Orlicz function N with the 

properties stated. The case min(aM, a ~ ) >  2 is obtained by duality. Q.E.D. 

We are going to show that the Orlicz function N appearing in Corollary 2.2 is 

actually equivalent to M at oo. This will follow from the following theorem, 

where the idea of proof is essentially the same as in the proof of the 

corresponding result by Lindenstrauss and Tzafriri  [8], th. 4 in case of Orlicz 

spaces on [0, 1]. 

THEOREM 2.3. Let M be an Orlicz function with max (/3M,/3 ~) < 2. If N is an 

Orlicz function so that LN (0, l) is isomorphic to a subspace of LM (0, ~), then 

sup M (x ) 

PROOF. Let  T: L N ( 0 , 1 ) ~  LM(0,~) denote an isomorphism, and put for 

m EI~ and 1 = < i ~ m, ~,,,~ = lt,-w,.,,/,.j, 3'- = 114,,,- I1,, and f , .  = 3',.-aT,~b,.m. 

From the fact that {{T-'{{-'---{t~.,~{{M---{ITH for all i and m together with the 

A2-property of M we get that there is a constant C = 1 so that 

(I) C-'<-_ M(l[,,~(t)ldt<=C m E ~  l<i<=m. 

It follows immediately from the definition of the f.m,s that for all possible 

choices of signs E ( =  - 1 )  i = 1 ,2 . . .m ,  we have 

~ 3':.'It TI[ ( 2 )  3 ' : . ' 11T- ' I I - '  _-< , ~ ,  O , f , m  ~ - .  

By [2] (p. 470) we get that there is a constant K, only dependent  on M, so that 

where E denotes the average of all 2 m possible signs. 

Hence for at least half the choices of signs we have 
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r n  ~ 

(,> fo M(l O<,o(t,])dt<=2K, fo M ([ ~.m (t)[)dt. 

Israel J. Math., 

As in the proof of theorem 4 of [8], we can now using (4) inductively for 

m, = 2" n E N choose signs (07")Z--,, so that (4) is satisfied and so that the 

functions 

(5) On = E?:,O?"cb,.~. n E N l <=i <-_m. 

are asymptotically orthogonal (i.e. that for  all k, there is an n(k )  with 

[fg~bj (t)O, (t)] -< 2-~,1 --< j _-< k, n >_- n (k); hence by the Khinchin inequality (O,j) is 

equivalent to the unit vector  basis of 12 for every  subsequence (n~) tending 

sufficiently fast to oc. Since by assumption the unit vector  basis of 12 is not 

sitting on disjoint blocks in L,~ (0, oo) we get from this together with Proposition 

1.3 that there is a measurable set A C_ [0, ~[ with 0 < A (A) < oo and a 8 > 0 so 

that 

(6) ~[[hnl]M --<[[h." I~[IM 

where hn = y2'.T~, n E %. 

We now claim that there is an e > 0 so that 

(7) A((t E A[ I h n ( t ) l > - e l [ h ~  • 

Indeed, if not, then by the above and prop. 3 of [8] there is a subsequence (nj) 

so that (4Jn~) is equivalent to the unit vector  basis of 12 and so that (T0.j • 1~) is 

equivalent to the unit vector  basis of IF for some F ~ C;,. The first s tatement 

gives: E~=.lbr<oo ~ET=,bT~b.j" IA is convergent,  and since by assumption 

there is a constant B, so that x ~<- BF(x),O-<_ x -<_ 1 the second one gives that 

ET=,bTO, i" 1a convergent  =), E~'=,[b[2< oo, and hence F is equivalent to x 2, 

which is a contradiction. From (1), (4), (6) and (7) we now obtain 

(8) eM(eSIIh,  l[) <- M( Ih , ( t ) [ )d t  <= M(72J l (T~ , ) ( t ) l )d t  <= 

2K, M([~.2o(t)[)dt <- 2CK, .  2 ~ all n, 

which gives 

(9) eM(y~[IT- 'H- ' eS )<=2K,C.2  n for all n. 

By the A2-property of M (9) gives that there is a constant K, so that 

(10) M(y~ --t)<= K2" all n. 

and hence if y ;~ <- x <= y ;L, 

M ( x )  <= M(y;i÷,) <__ K • 2 n÷' = 2KN(y~-2) _-< 2 K N ( x ) .  
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This concludes the proof of the theorem. 

We can now show: 
THEOREM 2.4. Let  LM (0, oo) be a reflexive Orlicz space so that 2 ~ [aM, [3M ] to 

[a ;~, [3 ;~]. Then : 

(i) I f  LM(O,~) is i somorphic  to a symmetr ic  funct ion space Lp(0, 1) and 

either min(aM, a ;~ )>2  or max([3M,[3;~)<2 then Lp(0,1) is i somorphic  to 

LM(0, 1). 
(ii) I[ LM(O, oz) is i somorphic  to an Orlicz space LN(O, !), then M is 

equivalent to N at to and [aM, [3M ] C_ [a ;~, [3 ~]. 

PROOF. By Corollary 2.2 (i) is a special case of (ii), so we have only to prove 

the latter. 
Let M* and N* denote the conjugate Orlicz functions to M, respectively N. 

Let us assume that /3 ;4 < 2. Since a 7~. > 2 we get that 

(1) p ~ [aT~-,/3~r.] ::> p = 2  or x p E CM.(0,oo). 

If [3M > 2, then aM > 2 and hence (1) and Theorem 1.5 give that either 

(2) [a ~,/3 ~] _C [aM,/3M ] tO [a ;A,/3 ~1 
or else a 7~ =/37~ = 2, but since LN(0, I) contains subspaces isomorphic to lp for 

p ~ 2 by our assumption, this is excluded by corollary 4 of [8]. Hence (2) holds 

and therefore either 

(3) [a ~,/3~] C_ [a ~,/3 ~] 
or  

(4) [a ~,/3 ~1 _C [aM,/3M 1. 
If (3) occurs then a7~.>2 and since LM.(0, oo) is isomorphic to LN.(0,1), 

LN.(0, 1) contains isomorphs of lp for each p E [a M., [3 M*], and hence by the 
corollary cited above [a M*, /3 M*] C [a7~.,[37~-], which is a contradiction; simi- 

larly (4) leads to a contradiction. Hence we must have /3M < 2. 

Using Theorem 2.3 we obtain 

(5) supx-=,(M(x)) / (N(x) )  < ~. 

From (1) together with the fact that [3M < 2 we get that /3~< 2 and therefore 

(since LM (0, 1) can be embedded into LN (0, I)) we get from theorem 4 of [8] that 

(6) s u p x ~ , ( N ( x ) ) / ( M ( x ) )  < oo. 

Arguments similar to the ones above also show that [aM,/3M ] _C [a 7~,/37~], but by 

(5) and (6) a ?~ = a ~ and/3 ;~ =/37~. The case, where a ~ > 2 follows from the 

already shown by dualizatiotl. Q.E.D. 

Let us recall that if N is an Orlicz function and F ( x )  = l i m , ~ ( N ( t x ) ) / ( N ( t ) )  

exists for every x E [0, 1], then F ( x )  = x ~ for some p, 1 =<p < ~. Indeed, since 

N satisfies the A2-condition, F is a continuous convex function and if 

a E ]0, 1], then 
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F ( a x )  _ lim N ( a t x )  = F(x )  x ~ [0, 1], 
F ( a )  ~= N ( a t )  

so F ( a x ) =  F ( a ) F ( x ) ;  it is well known that under these circumstances F has 

the properties stated. 

We can now show the following theorem: 

THEOREM 2.5. Let  LM(O, oo) be a reflexive Orlicz space so that for some 

p ~ 2 ,  

M ( t x )  
lim,_= M ( t )  = xp' x E[O, 1]. 

I f  one o f  the two conditions 

(i) 2 ~ [aM, tiM] and LM(O, ~) is isomorphic to an Orlicz [unction space on 

[0, l], 

(ii) LM (0, ~) is isomorphic to a symmetric  function space on [0, l] and either 

max(p, /3 ,~)<2 or min(aM, p ) > 2  

holds, then M is equivalent to x ~. 

PROOF. We shall suppose that p > 2; the other case will then follow by 
duality. 

By Theorem 2.4 both (i) and (ii) imply that LM (0, oo) is isomorphic to LM(0, l) 

and aM =/3M = p, so let T: LM(0,~) --, LM(0, l) be an isomorphism onto and 

put g . =  I[TII IIT-'II. 
Now let a - I be an arbitrary number and let (A.) be a sequence of mutually 

disjoint measurable subsets of [0,oo[ with A(A.) = M ( a ) - '  for all n, and define 

[. = a • 1,~., g. = 7"[. for all n ~ I~1. ([.) is clearly isometrically equivalent to the 

unit vector basis of the Orlicz sequence space IMo, where M~(x)=  

M ( a ) - ~ M ( a x ) ,  x E [0, 11, and hence (g.) is K-equivalent to it. 

It now follows from our assumptions that for every e > 0  we have 

(g.) SZ A ~,(0. 1); indeed suppose that for some e > 0  

A {t ~ [0, llJ J g. (t)J _-> e Jig. JJ} => e for all n. By our assumptions on M the formal 

identity map I: LM(0, I) ~ L2(0, 1) is continuous, so if Z~=~t.g. is convergent, 

then E. t . l (g . )  converges unconditionally in L2(0, 1) and hence E. It. I~HI(g.)Jl~ < 

~, but since Iii(g.)ll~>e311g.liM >-e3K -', this implies that Z . I t .  12<~. On the 

other hand (g.) is equivalent to the unit vector basis of IM, and since 

Zl t .  J2<oo : :>E .M(I t . ] )<~ ,  we would have that M is equivalent to x ~ at 0, 

contradiction. 

Since C~ = {x" } it now follows from the proof of proposition 3 in [8] and the 

results in [3] that if (e~) is a sequence tending sufficiently fast to 0, then there 
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are elements g~, ~ A h (0, l),so that (g.,) is a basic sequence, 2-equivalent to the 

unit vector  basis of lp. 

Since (fn) is isometrically equivalent to each of its subsequences it follows 

that ([.) (and hence the unit vector  basis of IMo) is 2K-equivalent  to the unit 

vector  basis of lp. By the A2-property of M, this implies that there is a constant 

K~ independent on a, so that 

(1) K ~ ' x P < - M ( a ) - ' M ( a x ) < = K , x  p x ~[0 ,1 ] .  

For  a = 1 we get that M is equivalent to x p at 0, and if we put x = a ' in (I), 

we obtain that M is equivalent to x p at oo. Q.E.D. 

We are also able to prove 

THEOREM 2.6. Let M be an Orlicz function, so that 

M ( t x )  
lim,~ M ( t ) = x P ,  x E[0 ,1 ]  f o r some  p, 1 -<p <o c .  

I f  LM (0, oo) is lattice isomorphic to LM (0, 1), then M is equivalent to x". 

PROOF. This can be proved as Theorem 2.5. Indeed the only place, where 

the conditions on M were used there, was in the technique involving the sets 

A ;,, and we need not use this argument under the assumptions of the present 

theorem, since a lattice isomorphism maps disjoint functions onto disjoint 

functions. Q.E.D. 

The following theorem shows that if LM (0, ~) is isomorphic to LM (0, I) and M 

is not equivalent to x ~, then there are no "n ice"  isomorphisms between the 

spaces. 

THEOREM 2.7. Let d(LM(0,~),  L~(0,  1 ) )<~ .  I f  there is a lattice isomorph-  

ism T of  LM(O, 1) onto L , (O,  oo) and an Orlicz function N equivalent to M, so 

that 

(i) fo ®N(ITI[)dA = fo' N ( [ l [ ) d t  / ~ L ~ ( 0 , 1 ) ,  

then there is a p, 1 <-_ p < oo with M equivalent to x P. 

PROOF. Let  9~1 (respectively 9~)  denote  the set of equivalence classes of  

the Borel sets in [0, I] (respectively [0, o0[ ), and let us define a map ~b : ~® ~ 901 

by 

(1) ~b(A)= suppT- ' (1A) A E ~ .  
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Since T is a lattice isomorphism it is easy to see that ~b satisfies the following 

conditions 

(2) X(tk([0,oo[))= 1. 

(3) ~b([0,oo[\A) = 4~([0,oo[)/4~(A ) A E ~=. 

(4) ~ b ( U . A , ) =  U , ¢ ( A , )  for  mutually disjoint A, E ~ .  

It is well known that under these circumstances ~b induces a linear map 4~ ° 

from the space of measurable functions on [0, I] onto the space of measurable 

functions on [0,:¢[, so that ~b°(la)= I,-,~A~A ~ ~ .  

Now let f be a simple function on [0, 1], say f = E['=~al la,, where U ?=,A~ = 

[0, 1], a i  n a j  = 0 ,  ig] .  

For every i ==_ n the support of the function f -  a~ ito.,j is disjoint from A~ and 

hence by the definition of 4~ we get that s u p p ( T f -  a~ • lto.~0 is disjoint f rom 

6-'(A~), hence for all i _-<n: 

(5) 7"['= a~T(1)l,-,~ao = T ( 1 ) ~ ° / o n  A~ 

and summing over  i we obtain (5) everywhere.  By continuity of T we get that 

(5) holds for  all functions in Lu(0 ,  1). 

If we put u = T(I) ,  then we get for all r E [0,oo[ and all A C 93= 

fo N(r)cb-'(A)(A) = N(r  1,~a~)dA = N(ru)dA. 

By the uniqueness of Radon-Nikodym derivatives and the continuity of N, we 

get for  a suitable set A C_ [0, ~[ A ( A ) =  0: 

(6) N(u( t )r )  = N(r )N(u( t ) )  r E [0,~[ t ~ [0,~[\A. 

Since u E LM(0,~) there is a to, so that 0 < a  = U(to)P 1, clearly 

(7) N ( a " x ) = N ( a " ) N ( x )  for  a l l x = > 0 a n d  n = 0 , - + i , - - - 2 , . . .  

From (7) it follows immediately that there exists a constant K =>0 so that 

K - ' N ( t ) N ( x )  <= N(tx)  <= K N ( t ) N ( x )  for  all t ,x >= 0, and therefore there is a p, 

so that N -  x p, and the same holds for  M. Q.E.D. 

Let  us now return again to the general case. If M is an Orlicz function and 

s E [0, 1], then we put M,(x)= (M(sx))/(M(s))x E R. Since M, is equivalent 

to M, we get of course that d(LM(O, 1), LM, (0, 1)) < ~, but it is easy to see that 

in general this distance depends on s, and the question is then, when it is 

uniformly bounded in s from above. We have the following theorem. 

THEOREM 2.8. Let M be an Orlicz function so that LM (0, oo) is isomorphic to 

L~ (0, I). Then there is a constant K, so that d(Lu (0, 1), L~, (0, 1)) <-K for all 

s • ]0, 1]. 
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PROOF. Let  us first recall that if X and Y are two Banach spaces, then the 

space (X(~)Y),,, is the space X x Y  equipped with the norm ]](x,y)l[= 
maxtlIx II, I[yll) for  (x ,y)  @ X ×  r .  

If a _-> 1 is arbitrary, then it is easy to see that LM(a, 2) is isometric to 

Lu(0,  2) and that 

(1) L ~ ( O , a ) =  L~(O, 1 )~)LM(I ,a ) .  

(2) L~(0 ,2 )  = LM(O,a)(~)LM(a, 2). 

Letting " ~  " denote "isomorphic to " 

(3) 

we have the following scheme: 

LM(0, 1) -- LM(0,~)=  L M ( O , a ) ~ L M ( a , ~ )  

LM(O, a )(~ L.,(O, oo) ~ (LM(O, a )(~ LM(O, 1)) 

( (L .  (0, I)(~)LM(I,a))(~)LM(O, !)) 

(LM(O, I ) (~LM(1,a) )  -- LM(O,a). 

Using the isomorphisms in (3) to compute d(LM (0, a ), LM (0, I)) we find that 

there is a constant K independent of a, so that 

(4) d(LM(O,a) ,LM(O, I ) )<-K for  all a => l. 

Since LM(0, a)  is readily seen to be' isometric to Lu,(0, I) with s = M ' (a- ' ) ,  

the conclusion of the theorem follows directly from (4). Q.E.D. 

Theorem 2.8 naturally leads to the following conjecture.  

CONJECTURE 2.9. Let M be an Orlicz function and let {N~ta ~ I} be a 

family of  Orlicz functions, each having the same A,.-constant as M. I f  

sup~d(LM(0, I), LN,(0, i ) ) <  2 then there is a constant K independent on a so 

that 

K- 'N~(x )<=M(x)<=KN~(x)  x >= 1. 

If this conjecture is answered positively, then it would follow from Theorems 

2.4 and 2.8 that under the conditions in 2.4 an Orlicz space LM(0,2) is 

isomorphic to a symmetric function space on (0, 1) (an Orlicz space on (0, 1) 

under 2.4 ii) if and only if M - x  p for some p, I < p  < ~ .  Indeed, M and the 

family {Ms ]s E ]0,1]} will satisfy the conditions of 2.9, and hence there would 

be a constant  K so that 

(*) K - ' M ( x ) M ( s ) < - _ M ( s x ) < = K M ( s ) M ( x )  0 < s < l  x=>l  

and it is well known that an Orlicz function satisfying (*) is equivalent to x" for  

s o m e p  1 - < p < ~ .  
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In theorem 4 of [8] it is shown that if M and N are Orlicz functions with 

l, 2 ~ [a ~,/3 ~], so that LM (0, l) is isomorphic to LN (0, 1), then M is equivalent 

to N at oo. One could hope that the proof of this (similar to our proof of 2.3) 

would show that the equivalence constant between M and N only depends on 

d(LM(O, 1), LN(0, l)) and the Az-constants of M and N, and hence answer 

Conjecture 2.9. Unfortunately this is not the case, indeed, the main point in the 

proof (as in 2.3 here) is to construct a "characteristic" sequence in LN(0, l) with 

the aid of the Dacunha-Castelle inequality (Formula (3) in 2.3), whose image in 

LM(0, 1) is contained in A;` for a suitable e. While it is easy to check that the 

constant in the above mentioned inequality only depends on the A2-constant of 

M, the e obviously depends on the chosen sequence, and hence the finally 

computed constant will also do it. If we apply this technique to the setting of 2.9 

we will get a family {e~} of numbers and it seems impossible to show that this 

family is bounded away from 0, even in the case, where the family is 

{Ms 10< s -< 1}. 

As it is seen, it seems as the Kadec-Pe|czyfiski "A ; ,-technique" is too weak 

to give an answer to Conjecture 2.9. Recently, however, Pe]czyfiski and 

Rosenthal [I1] obtained finite dimensional versions of the results of Kadec and 

Pelczyfiski [3] on Lp-spaces, and it is likely that the methods used here would 

be strong enough to solve conjectures like 2.9, if they can be carried over to the 

Orlicz space case (but that this is possible, is not so straightforward as in case 
of the Kadec-Peiczyfiski technique, and so far we have been unable to do it). 

3. Some additional remarks and open problems 

The main problems left open in this paper are of course centered around the 

qu'estion, whether or not Theorem 2.5 can be generalized to the class consisting 

of all Orlicz functions. 

Of other problems on the Orlicz spaces LM(0,~) we can mention: 

PROBLEM 3.1. Let M and N be Orlicz functions, so that 1,2 ~ [aM,/3u] U 

[ t~, /3~].  Suppose that LM(0,~) is isomorphic to LN(0,~). Are M and N 

equivalent? What is the situation if i ,2 E [aM,/3M] t_J [a~,/3~]? 

Applying Theorem 2.3 and the technique of the proof of Theorem 2.4 it is not 

difficult to show that if M and N satisfy the conditions of the first question in 

3.1, then M and N are equivalent at ~, so the hard task is to decide how the 

Orlicz functions behave close to 0. Here one should perhaps keep in mind that 

while the problem similar to 3.1 in the case [0, I] is solved positively by theorem 

4 of [8], then there are also examples of non-equivalent Orlicz functions M and 
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N, so that lu and IN are isomorphic. The second question and even the similar 

one for the case of [0, l] are both wide open. The reason for dividing Problem 

3.1 into two cases is that in the first case it will be possible to use a reflexivity 

argument together with the important Theorem 2.3, which cannot be general- 

ized, at least not to the case, where /3~->_ 2, since L2(0, 1) is isomorphic to a 

subspace of every Orlicz space LM(0,~) (via the Rademacher  functions on 

[0, 1) and the Khinchin inequality). We believe however  that 3.1 can be proved 

in the affirmative without using 2.3. 

Similar remarks on the role of theorem 2.3 can be applied to the following 

problem: 

PROBLEM 3.2. Can the restriction I, 2 ~ [aM, tiM] U [a ~,/3 ~] be removed in 

Theorem 2.4 (ii)? 

Is (i) of Theorem 2.4 true under the same conditions on M as in (ii)? 

The second question in 3.2 will follow from 

PROBLEM 3.3. If LM(0,~o) is isomorphic to an Lp(0,1), is Lp(0,1) then 

isomorphic to an Orlicz space on [0, l] ? 

We strongly believe that 3.3 can be answered in the affirmative by a proof,  

which does not involve imbeddings into L, -spaces  as Corollary 2.2 does. 

Let  us finally give a few important examples of Orlicz functions,  different 

from the x"-funct ions,  belonging to the class considered in 2.5 (and hence of 

Orlicz spaces on (0, 2), which are not isomorphic to symmetric function spaces 

on (0, 1)). 

EXAMPLE 3.4. Let  1 < p #  2 and let N be an arbitrary Orlicz function, 

whose interval [aN,/3N] is to " the  same side" of 2 as p. If  we put M ( x ) =  

x ~ log x in a suitable neighbourhood of oo, M ( x )  = N ( x )  in a suitable neighbour- 

hood of 0 and modify M in between to be convex,  then M belongs to the class 

of 2.5. The same is true in the case, where we put M ( x ) = z P / l o g x  in a 
neighbourhood of oo. 

EXAMPLE 3.5. Let  K _C ]1,2[ be an infinite compact  set so that p = 

sup K ~  2, let /z be a probability measure on K with support K and so that 

tz{p} = 0, and let N be an Orlicz function with [aN, fiN] to " the same side" of 2 

as p. Define: 

M ( x )  = fKx'dl~ (s) in a suitable neighbourhood of  oo. 

M ( x )  = N ( x )  in a suitable neighbourhood of 0. 
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Since it is easily shown that l im,_~(M(tx)) / (M(t) )  = x p for all x ~ [0, 1], M 

belongs to the class of Orlicz funtions considered in 2.5, and since/x{p} = 0, M 

is not equivalent to x p at oo. 

Other examples can be found in [6], [7] and [8]. 

Appendix  

In this section we shall briefly comment on some recent results of Dacunha- 

Casteile [12] and Dacunha-Castelle and Schreiber [13] and their connection 

with the subject of this paper. If M is an Orlicz function, then we put 

M ( x )  = M ( x ) ^ x  2. With this notation the following result is proved in [13]. 

THEOREM A 1. Let X be a Banach space with symmetric basis. Then X 

embeds into LM (0, l) with 2 ~: [a ~,[3 ~] if and only if X is isomorphic to an Orlicz 

sequence space iv with 

F E C~(0,oo) /.f /3~,< 2. 
F E c o n v ( x 2 ,  E ~ ) . i /  a ~ > 2 .  

The question is now, if a similar result holds in the case of Orlicz spaces 
LM (0, 0o)? 

We have not been able to answer this question. However, the following holds 

trivially: 

PROPOSITION A2. L e t X b e a s u b s p a c e o f L M ( O , ~ ) ,  where 1 < min(aM, a~),  

max (fl ~, flu) < 2. I f  X has a symmetric basis, then X is isomorphic to an Orlicz 

sequence space. 

PROOF. If i < p  < min(aM, a~),  embed LM(0,~) into L,(0,1) and apply 

Theorem A 1. 

The proof of Theorem A 1 uses rather heavy probabilistic methods, which 

cannot be directly transferred to the case of the Orlicz function spaces 

LM(0,~). Also it seems impossible to reduce this case to that of LM(0, 1) via 

techniques similar to the condition (A) of Section 1. However, we strongly 

believe that Theorem A 1 holds in some form and hope to be able to treat this in 

a future paper. 
In [12] the problems of embedding Orlicz function spaces into Orlicz 

function spaces are treated. The result most interesting for the subject of this 

paper is the following: 
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THEOREM A 3. Let M and N be non-equivalent Orlicz [unctions with [3 ~ < 2. 

Then LN(O,~) embeds into LM(0, I) if and only if 

~ If4 ( tx ) } 
N C  conv [ - ~ - ~  It E]0,1] 

(closure in the topology of uniform convergence on compacta). 

This result is of course not useful for us in connect ion with the problems of 

Section 2, since we need to consider the case M - N, which is still unsolved. 

In his discussion of the problems in the case M -  N Dacunha-Castel le  

touches shortly the main problem of this paper. He raises a question, the 

affirmative answer  of which will solve our problem. It is not difficult to see that 

his question is equivalent  to the question of conjecture 2.9. 
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